346 research outputs found

    LEUNIG regulates AGAMOUS expression in Arabidopsis flowers

    Get PDF
    LEUNIG was identified in a genetic screen designed to isolate second-site enhancer mutations of the floral homeotic mutant apetala2-1. leunig mutations not only enhance apetala2, but by themselves cause a similar but less-pronounced homeotic transformation than apetala2 mutations. leunig flowers have sepals that are transformed toward stamens and carpels, and petals that are either staminoid or absent. In situ hybridization experiments with leunig mutants revealed altered expression pattern of the floral homeotic genes APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Double mutants of leunig and agamous exhibited a phenotype similar to agamous single mutants, indicating that agamous is epistatic to leunig. Our analysis suggests that a key role of LEUNIG is to negatively regulate AGAMOUS expression in the first two whorls of the Arabidopsis flower

    Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern

    Get PDF
    An open question in developmental biology is how groups of dividing cells can generate specific numbers of segments or organs. We describe the phenotypic effects of mutations in PERIANTHIA, a gene specifically required for floral organ patterning in Arabidopsis thaliana. Most wild-type Arabidopsis flowers have 4 sepals, 4 petals, 6 stamens, and 2 carpels. Flowers of perianthia mutant plants most commonly show a pentamerous pattern of 5 sepals, 5 petals 5 stamens, and 2 carpels. This pattern is characteristic of flowers in a number of plant families, but not in the family Brassicaceae, which includes Arabidopsis. Unlike previously described mutations affecting floral organ number, perianthia does not appear to affect apical or floral meristem sizes, nor is any other aspect of vegetative or floral development severely affected. Floral organs in perianthia arise in a regular, stereotypical pattern similar to that in distantly related species with pentamerous flowers. Genetic analysis shows that PERIANTHIA acts downstream of the floral meristem identity genes and independently of the floral meristem size and floral organ identity genes in establishing floral organ initiation patterns. Thus PERIANTHIA acts in a previously unidentified process required for organ patterning in Arabidopsis flowers

    The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function

    Get PDF
    The class B organ identity genes, APETALA3 and PISTILLATA, are required to specify petal and stamen identity in the Arabidopsis flower. We show here that the activities of these two genes are sufficient to specify petals and stamens in flowers, in combination with the class A and C genes, respectively. Flowers of plants constitutively expressing both PISTILLATA and APETALA3 under the control of the 35S promoter from cauliflower mosaic virus consist of two outer whorls of petals and inner whorls of stamens. These plants also exhibit vegetative phenotypes that are not present in either of the singly (APETALA3 or PISTILLATA) overexpressing lines. These phenotypes include leaf curling and the partial conversion of later-arising cauline leaves to petals. The presence of additional floral whorls in flowers ectopically expressing APETALA3 and PISTILLATA and the rescue of missing organs in class A mutants by ectopic B function suggest that APETALA3 and PISTILLATA play an additional role in proliferation of the floral meristem

    TSO1 functions in cell division during Arabidopsis flower development

    Get PDF
    We describe an Arabidopsis mutant, tso1, which develops callus-like tissues in place of floral organs. The tso1 floral meristem lacks properly organized three cell layers, and the nuclei of these cells are irregular in size and shape. Further analyses reveal partially formed cell walls and increased DNA ploidy in tso1 floral meristem cells, indicating defects in mitosis and cytokinesis. Our finding that TSO1 is required for organ formation in floral tissues but not in other tissues indicates that TSO1 may encode a floral-specific cell division component, or that TSO1 function is redundant in nonfloral tissues

    CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1

    Get PDF
    We have previously described the phenotype of Arabidopsis thaliana plants with mutations at the CLAVATA1 (CLV1) locus (Clark, S. E., Running, M. P. and Meyerowitz, E. M. (1993) Development 119, 397-418). Our investigations demonstrated that clv1 plants develop enlarged vegetative and inflorescence apical meristems, and enlarged and indeterminate floral meristems. Here, we present an analysis of mutations at a separate locus, CLAVATA3(CLV3), that disrupt meristem development in a manner similar to clv1mutations. clv3 plants develop enlarged apical meristems as early as the mature embryo stage. clv3 floral meristems are also enlarged compared with wild type, and maintain a proliferating meristem throughout flower development. clv3 root meristems are unaffected, indicating that CLV3 is a specific regulator of shoot and floral meristem development. We demonstrate that the strong clv3-2 mutant is largely epistatic to clv1 mutants, and that the semi-dominance of clv1 alleles is enhanced by double heterozygosity with clv3 alleles, suggesting that these genes work in the same pathway to control meristem development. We propose that CLV1 and CLV3 are required to promote the differentiation of cells at the shoot and floral meristem

    Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis

    Get PDF
    Angiosperms use a multi-layered meristem (typically L1, L2 and L3) to produce primordia that then develop into plant organs, A number of experiments show that communication between the cell layers is important for normal development. We examined whether the function of the flower developmental control gene AGAMOUS involves communication across these layers. We developed a mosaic strategy using the Cre/loxP site-specific recombinase system, and identified the sector structure for mosaics that produced mutant flowers. The major conclusions were that (1) AGAMOUS must be active in the L2 for staminoid and carpelloid tissues, (2) that AGAMOUS must be active in the L2 and the L3 for floral meristem determinacy, and (3) that epidermal cell identity can be communicated by the L2 to the L1 layer

    The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis

    Get PDF
    The study of cell division control within developing tissues is central to understanding the processes of pattern formation. The floral meristem of angiosperms gives rise to floral organs in a particular number and pattern. Despite its critical role, little is known about how cell division is controlled in the floral meristem, and few genes involved have been identified. We describe the phenotypic effects of mutations in WIGGUM, a gene required for control of cell proliferation in the floral and apical meristem of Arabidopsis thaliana. wiggum flowers contain more organs, especially sepals and petals, than found in wild-type flowers. This organ number phenotype correlates with specific size changes in the early floral meristem, preceding organ initiation. Genetic studies suggest that WIGGUM acts on a similar process but in a separate pathway than the CLAVATA1 and CLAVATA3 genes in meristem size regulation, and reveal interactions with other genes affecting meristem structure and identity. Analysis of double mutant phenotypes also reveals a role for WIGGUM in apical meristem function. We propose that WIGGUM plays a role in restricting cell division relative to cellular differentiation in specific regions of the apical and floral meristems

    Abnormal flowers and pattern formation in floral

    Get PDF
    “From our acquaintance with this abnormal enabled to unveil the secrets that normal us, and to see distinctly what, from the regular we can only infer.” - J. W. von Goethe (1790

    Genetic interactions among floral homeotic genes of Arabidopsis

    Get PDF
    We describe allelic series for three loci, mutations in which result in homeotic conversions in two adjacent whorls in the Arabidopsis thaliana flower. Both the structure of the mature flower and its development from the initial primordium are described by scanning electron microscopy. New mutations at the APETALA2 locus, ap2-2, ap2-8 and ap2-9, cause homeotic conversions in the outer two whorls: sepals to carpels (or leaves) and petals to stamens. Two new mutations of PISTILLATA, pi-2 and pi-3, cause second and third whorl organs to differentiate incorrectly. Homeotic conversions are petals to sepals and stamens to carpels, a pattern similar to that previously described for the apetala3-1 mutation. The AGAMOUS mutations, ag-2 and ag-3, affect the third and fourth whorls and cause petals to develop instead of stamens and another flower to arise in place of the gynoecium. In addition to homeotic changes, mutations at the APETALA2, APETALA3 and PISTILLATA loci may lead to reduced numbers of organs, or even their absence, in specific whorls. The bud and flower phenotypes of doubly and triply mutant strains, constructed with these and previously described alleles, are also described. Based on these results, a model is proposed that suggests that the products of these homeotic genes are each active in fields occupying two adjacent whorls, AP2 in the two outer whorls, PI and AP3 in whorls two and three, and AG in the two inner whorls. In combination, therefore, the gene products in these three concentric, overlapping fields specify the four types of organs in the wild-type flower. Further, the phenotypes of multiple mutant lines indicate that the wild-type products of the AGAMOUS and APETALA2 genes interact antagonistically. AP2 seems to keep the AG gene inactive in the two outer whorls while the converse is likely in the two inner whorls. This field model successfully predicts the phenotypes of all the singly, doubly and triply mutant flowers described
    corecore